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Abstract

Common components and specific weights analysis (CCSWA) is a relatively recent multi-

block statistical method that constitutes an extension of principal components analysis

(PCA) in the case where different sets of quantitative variables have been measured on the

same set of individuals. We described in this thesis the principle of CCSWA and its appli-

cation in R software on real data to analyze farmers’ perception of land degradation and

soil erosion in northern Benin (West Africa). The data considered bear on 5 sociocultural

groups and variables are linked to the causes of land degradation (dataset 1), soil erosion

factors (dataset 2), land use practices against soil erosion (dataset 3) and techniques of

improvement of the soil fertility and crops productivity (dataset 4). On these datasets, we

also applied PCA in order to show the improvement of CCSWA compared to PCA. The

results of CCSWA showed that the common component q1, opposing Djerma to Haussa

farmers according to local perception of land degradation and soil erosion, expressed 60.4

%, 45.3 %, 10 % and 73.5 % of the total inertia of datasets 1, 2, 3 and 4 respectively.

Djerma farmers think that land degradation is due to erosion, agricultural settlement

and wildfire. Run-off and slope are the main soil erosion factors according to them. They

also think that crops productivity can be enhanced by using plows and carts. Regarding

Haussa farmers, deforestation is the main cause of land degradation, whereas the soil type

is the main soil erosion factor. Against soil erosion, they set up stony lines and use manure

and household rubbishes to improve the soil fertility and crops productivity. The common

component q2 explained 5.4 %, 30.8 %, 70 % and 9.4 % of the total inertia contained

in datasets 1, 2, 3 and 4 respectively and opposed Dendi to Djerma farmers about local

perception. Dendi farmers acknowledge animal stamping and soil type as the main soil

erosion factors and practice fallow to improve the soil fertility and crops productivity.

As regards Djerma farmers, they cover their lands and till orthogonally to the normal

flow of water in order to overcome soil erosion. Globally, the results of CCSWA and PCA

are almost the same but the improvement that CCSWA brings is the knowledge of how

different datasets cooperate to form the common components.

Keywords: CCSWA, PCA, multivariate analysis, multiblock analysis, perception, land

degradation.

ii



Résumé

L’Analyse en composantes communes et poids spécifiques (ACCPS) est une méthode

multiblock relativement récente qui constitue une extension de l’analyse en composantes

principales (ACP) au cas où plusieurs groupes de variables quantitatives ont été mesurées

sur le même groupe d’individus. Nous avons décris dans ce mémoire le principe de l’ACCPS

et son application sur des données réelles dans le logiciel R afin d’évaluer la perception

des paysans sur la dégradation du sol et les facteurs de l’érosion au nord Bénin (Afrique

de l’Ouest). Les données considérées portent sur les paysans de 5 groupes ethniques dont

les variables sont relatives aux causes de la dégradation du sol (tableau 1), aux facteurs de

l’érosion (tableau 2), aux mesures adaptatives face à l’érosion (tableau 3) et aux techniques

d’amélioration de la fertilité du sol et du rendement des cultures (tableau 4). Aussi, avons-

nous appliqué l’ACP sur ces données afin de montrer l’amélioration qu’apporte l’ACCPS

comparativement à l’ACP. Les résultats de l’ACCPS ont montré que la composante com-

mune q1 expliquant 60.4 %, 45.3 %, 10 % et 73.5 % de l’inertie totale des tableaux 1, 2, 3

et 4 respectivement, oppose les paysans Djerma aux paysans Haussa selon la perception

locale de la dégradation du sol et de l’érosion. Les paysans Djerma pensent que la dégra-

dation du sol est due à l’érosion, à l’installation des champs suite à une déforestation et

aux feux de brousses. Pour eux, le ruissellement et la pente sont les principaux facteurs de

l’érosion. Aussi, pensent-ils que l’usage des charrues et des charrettes pourrait accrôıtre le

rendement des cultures. A l’entendement des paysans Haussa, la déforestation constitue la

principale cause de la dégradation du sol. Selon eux, le type de sol favorise l’érosion. Afin

de lutter contre celle-ci, ils placent des cordons pierreux et utilisent le fumier et les ordures

ménagères pour accrôıtre la fertilité du sol et le rendement des cultures. La composante

commune q2 a expliqué 5.4 %, 30.8 %, 70 % et 9.4 % de l’inertie totale des tableaux 1, 2, 3

et 4 respectivement et a opposé les paysans Dendi aux paysans Djerma sur la perception

locale. Les paysans Dendi pensent que le piétinement et le type de sol sont les principaux

facteurs de l’érosion et font la jachère pour accrôıtre la fertilité du sol et le rendement des

cultures. Quant aux paysans Djerma, ils couvrent le sol et labourent perpendiculairement

au flux de l’eau afin de lutter contre l’érosion. Globalement, les résultats de l’ACCPS et

de l’ACP se recoupent dans une large mesure. Mais l’amélioration qu’apporte l’ACCPS

iii



réside dans le fait que nous avons une parfaite connaissance de la manière dont les dif-

férents tableaux concourent à déterminer les composantes communes.

Mots-clés: ACCPS, ACP, analyse multivariée, analyse multiblock, perception, dégra-

dation du sol.

iv



Acknowledgements

I am deeply grateful to my supervisor Prof. Romain GLELE KAKAÏ for his patience
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CHAPTER 1

Introduction

Problematic and objectives

Principal components analysis (PCA) is a multivariate statistical method that is used to

1) assess the proximity between individuals, 2) assess the variables on which are based

these proximities and 3) describe links between variables of a sample. It constructs few

principal components that are linear combination of initial variables and takes into ac-

count the maximum of inertia contained in the initial dataset.

PCA is applicable to only one dataset. However, in some situations a researcher may

need to collect not only one, but at least two multivariate datasets of quantitative vari-

ables bearing on the same individuals. The number of variables of these datasets can

be different. For the exploration of these datasets, several methods and approaches have

been proposed, but lead sometimes to unsatisfactory results. For example, although some

multidimensional methods such as PCA, factorial discriminant analysis and principal com-

ponent regression are said to be highly efficient for single dataset analysis, they cannot

deal simultaneously with several datasets (Kulmyrzaev and Dufour, 2010). Some authors

propose to apply a multidimensional analysis on each dataset and thereafter pool the con-

clusions obtained from each analysis (Beuvier et al., 1997, Di Cagno et al., 2003, Hanafi

et al., 2006). Others propose to combine all the datasets into one dataset before running a

multidimensional analysis (Karoui et al., 2004, 2006). Although these approaches can give

interesting results, they cannot assess the relationships between all the datasets (Schoo-

jans and Massart, 2001, Mazerolles et al., 2006).

The appropriate methods that can be used to analyze several sets (blocks) of variables

observed on the same set of individuals are multiblock methods of data analysis. Some of

them are: common components and specific weights analysis, multiple co- inertia analysis

(MCoA), consensus principal components analysis (CPCA) also known as multiblock prin-

cipal components analysis (MbPCA), hierarchical principal components analysis (HPCA)
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and multiple factor analysis (MFA). Among these alternatives, CCSWA is our main in-

terest in this thesis. However, in situations where the same set of variables has been

recorded on different sets of individuals, one could refer to dual common components

and specific weights analysis, multigroup principal components analysis, Flury’s common

principal components analysis from the ”multigroup” package and dual multiple factor

analysis from the ”FactoMineR” package in R software to analyze these data.

CCSWA is an improvement of the algorithm that determines the parameters of the 3rd

model (named ”common underlying dimensions, differentially weighted”) of the hierarchy

of 3 models developed by Qannari et al. (1995) to analyze sensory data. These models

were based on Flury’s common principal components theory (1988) but using associa-

tion matrices instead of covariance matrices. Moreover, unlike common principal com-

ponents analysis, which requires the assumptions of normality and maximum likelihood

estimation, these models require no distributional assumption (Qannari et al., 1995). So,

CCSWA was originally introduced and applied to analyze sensory data (Qannari et al.,

2000, 2001). But very quickly, its use was extended to analyze other kind of data in other

fields. Indeed, Courcoux et al. (2002) used CCSWA to analyze multispectral image data.

Mazerolles et al. (2002, 2006), Hanafi et al. (2006) applied CCSWA to the coupling of

several measurements techniques: infrared spectroscopy, fluorescence spectroscopy, rhe-

ological analysis and chemical analysis on cheese to cope with food complexity. Karoui

et al. (2006) coupled the front face fluorescence spectroscopy with CCSWA to study the

structure of cheeses at the molecular level throughout ripening by following changes af-

fecting proteins, fats, interactions in the matrix cheese during ripening. Blackman et al.

(2010) applied CCSWA on analytical measurements and sensory data of wines to show

the potential for using analytical measurements as a surrogate for sensory analysis. The

main objective of this thesis was to describe the principle of CCSWA and use it to analyze

farmers’ perception of land degradation and soil erosion by considering a case study in

northern Benin (West Africa).

Land degradation is one of the most serious problems currently affecting agricultural pro-

ductivity in developing countries of the tropics (Akinnagbe and Umukoro, 2011). And

farmers are those who can give more information about this issue. Therefore, Chizana et

al. (2011) examined farmers’ perception, understanding and interpretation of soil erosion

factors and indicators and how they relate to land degradation and soil fertility decline

in Zimbabwe. Avakoudjo et al. (2011) used farmers’ perceptions to identify the main soil

erosion causes and factors, to improve the knowledge on the ”dongas” phenomenon in the

W National Park of Benin and its surrounding areas. These aforementioned authors often
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use descriptive statistics, except Avakoudjo et al. (2011), who also used PCA to analyze

their data. The following specific objectives were considered:

� describe the principle of CCSWA using sensory data of wines

� use CCSWA to analyze farmers’ perception of land degradation and soil erosion

� assess the relative performance of PCA and CCSWA in describing local perception

of land degradation.
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CHAPTER 2

Principle

2.1 Description of sensory data of wines

The datasets used to present the principle of CCSWA are related to the evaluation of

eight (8) wines appearance by four (4) expert tasters (Table 2.1). A jury made up of four

judges evaluated the appearance of eight wines according to the procedure known as free

profile, where each judge notes on a scale from 0 to 10 the products according to his/her

own variables (Williams and Langron, 1984, Hanafi and Kiers, 2006, Hanafi and Qannari,

2008, Kissita et al., 2009). For a product having a given variable, the note allotted by

a judge corresponds to the intensity which he/she perceives and which he/she is able,

thanks to a preliminary drive, to translate in form of a note. Each dataset is associated

with one judge. The goal of the analysis is to evaluate if there is an agreement between

judges or groups of judges and assess the relationships among products.
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Table 2.1: Evaluation of the appearance of 8 wines by 4 judges

(a) Judge 1 (X1)

red gilded soft plum

Wine 1 7 0 5 8

Wine 2 5 6 6 3

Wine 3 7 2 5 5

Wine 4 5 7 7 4

Wine 5 5 7 6 4

Wine 6 6 8 6 1

Wine 7 5 4 10 3

Wine 8 6 6 6 5

(b) Judge 2 (X2)

ruby coloured intensity

Wine 1 4 0 5

Wine 2 3 6 5

Wine 3 3 3 7

Wine 4 1 6 3

Wine 5 2 5 5

Wine 6 1 5 4

Wine 7 0 4 2

Wine 8 2 6 4

(c) Judge 3 (X3)

red blue gilded intensity

Wine 1 7 4 2 6

Wine 2 2 0 6 6

Wine 3 6 3 4 7

Wine 4 2 0 6 4

Wine 5 5 1 5 6

Wine 6 3 0 5 5

Wine 7 2 0 4 3

Wine 8 4 0 4 5

(d) Judge 4 (X4)

deep expenses brilliant

Wine 1 9 7 9

Wine 2 8 6 7

Wine 3 10 6 7

Wine 4 7 7 8

Wine 5 8 7 8

Wine 6 8 8 10

Wine 7 6 5 10

Wine 8 8 9 10

2.2 Computation of common components and

specific weights

Let us consider m datasets as raw data. Each dataset denoted by Yk is a rectangular

matrix nxpk, where n is the number of individuals and pk, the number of variables of the kth

dataset (k=1, 2, ..., m). From these raw data, many steps are used to perform the common

components and specific weights analysis. The first one consists of preprocessing each

dataset (centering each variable, then normalizing each dataset). In the second step, we
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compute the scalar product matrix associated with each dataset. Then, in the third step,

we apply an algorithm on these scalar product matrices, in order to estimate the common

components and the specific weights. The fourth step is related to the computation of a

compromise matrix.

For our example m=4 datasets, the number of individuals (wines) in each dataset is

equal to n=8 and the number of variables in the first, second, third and fourth dataset is

respectively: p1 = 4, p2 = 4, p3 = 3, p4 = 7. These datasets are shown in Table 2.1. The

first dataset is composed of:

Y1 =



7 0 5 8

5 6 6 3

7 2 5 5

5 7 7 4

5 7 6 4

6 8 6 1

5 4 10 3

6 6 6 9


(2.1)

Step 1: Center each variable. Then if it is useful, normalize each dataset to unit norm

before starting the computation of the common components and specific weights.

The data centering aims at removing the irrelevant differences among individuals and

making the results interpretation easy. To center a variable, we subtract from its entries,

the mean value of the considered variable. For a variable Ykj, the mean is computed as:

Ȳkj =

∑n
i=1 ykji
n

n is the number of individuals, k is the dataset index (k=1, 2, ..., m), i is the row index

and j, the column index (j = 1, 2, . . . , pk).

For our example, the mean value of the first variable of Y1 is:

Ȳ11 =

∑8
i=1 y11i

8
= 5.750

In the same way, the mean value of the second, third and fourth variable of Y1 is respec-

tively equal to: 5.000, 6.375 and 4.125.
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Thus, the centered dataset of Y1 is:

Y1 =



1.25 −5 −1.375 3.875

−0.75 1 −0.375 −1.125

1.25 −3 −1.375 0.875

−0.75 2 0.625 −0.125

−0.75 2 −0.375 −0.125

0.25 3 −0.375 −3.125

−0.75 −1 3.625 −1.125

0.25 1 −0.375 0.875


(2.2)

The first row of Y1 is given by: 1.25=7-5.750; -5=0-5; -1.375=5-6.375; 3.875=8-4.125.

In R software, the ”scale” function of the base package can be used to center variables

(columns) of a matrix: scale (Y1, center=TRUE, scale=FALSE), where Y1 is a numeric

matrix. If the scale argument of the ”scale” function is set to ”TRUE”, then each column

is divided by its standard deviation. But since we don’t need it, we set this argument to

”FALSE”.

The datasets normalization is specific to multiblock methods and corrects irrelevant differ-

ences that can exist between datasets (difference in size or in variance). The normalization

is optional, but when this is done, we acquire an advantage for the results interpretation

as we will see it later in step 3d. The norm considered is the Frobenius one (also called

Euclidean norm):

‖Yk‖2 =

√√√√ n∑
i=1

pk∑
j=1

y2kij

.

n is number of individuals, k is the dataset index (k=1, 2, ..., m) and pk, the number of

variables in the kth dataset.

For our example, the norm of the first centered dataset is:

‖Y1‖2 =

√√√√ 8∑
i=1

4∑
j=1

y21ij = (1.25)2 + (−5)2 + (−1.375)2 + (3.875)2 + . . .+ (0.875)2 = 10.308

Similarly, the norm of the second, third and fourth centered dataset is obtained in the

same way. They are respectively: 7.599, 8.269 and 5.723. The norm of Y1 can be computed

in R software using the ”norm” function of the base package: norm (Y1 , ”f”), where ”f”
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specifies the Frobenius norm. But ”F” can be used instead of ”f”.

Denote by Xk (k = 1, 2, . . . , m), the centered and normalized dataset of Yk (k =

1, 2, . . . , m).

For our example, the centered and normalized dataset of Y1 is:

X1 =



0.121 −0.485 −0.133 0.376

−0.073 0.097 −0.036 −0.109

0.121 −0.291 −0.133 0.085

−0.073 0.194 0.061 −0.012

−0.073 0.194 −0.036 −0.012

0.024 0.291 −0.036 −0.303

−0.073 −0.097 0.351 −0.109

0.024 0.097 −0.036 0.085


(2.3)

The first row of X1 is obtained by doing the following computations:

0.121 = 1.25
10.308

,−0.485 = −5
10.308

,−0.133 = −1.375
10.308

and 0.376 = 3.875
10.308

.

The remaining rows are obtained in the same way. Instead of dividing each centered value

of a dataset by the norm of the considered dataset, one can directly use in R software, the

function ”normM” of the multigroup package on the centered datasets to normalize them.

Step 2: Start the computation of the common components and specific weights by com-

puting for each dataset, the scalar product matrix:

Wk = XkX
′
k (2.4)

where X ′k is the transpose matrix of Xk (the first column of Xk becomes the first row

of X ′k , the second column of Xk becomes the second row of X ′k and so on); k=1, 2, . . .,

m. Wk (k = 1, 2, . . . , m) is a (n, n) square symmetric matrix, n being the number of

individuals. Since variables are centered, the diagonal elements of Wk (k = 1, 2, . . . , m)

are the squared distances of individuals from the origin and its off-diagonal elements

are scalar products between individuals (which are quantities proportional to the cosine

between individuals). Each scalar product matrix expresses similarities among individuals

(Qannari et al., 1995).

For our example, as n=8, we will obtain (8, 8) scalar product matrices. The one associated

with X1 is given by:
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W1 =



0.409 −0.092 0.206 −0.116 −0.103 −0.247 −0.050 −0.007

−0.092 0.028 −0.041 0.023 0.027 0.061 −0.05 0.000

0.206 −0.041 0.124 −0.074 −0.061 −0.103 −0.037 −0.013

−0.116 0.023 −0.074 0.047 0.041 0.056 0.009 0.014

−0.103 0.027 −0.061 0.041 0.044 0.060 −0.025 0.017

−0.247 0.061 −0.103 0.056 0.060 0.179 −0.010 0.004

−0.050 −0.005 −0.037 0.009 −0.025 −0.010 0.150 −0.033

−0.007 0.000 −0.013 0.014 0.017 0.004 −0.033 0.019


(2.5)

CCSWA model stipulates the existence of common components to all the datasets but the

weights (saliences) of each dataset on these common components can be different. This

weighting difference can be explained by the presence of information in some datasets but

not in others. Thus, the model of CCSWA can be written as:

Wk = QΛkQ
′ + Ek =

n−1∑
r=1

λkrqrq
′
r + Ek (2.6)

where n is the number of individuals, Q is an orthogonal matrix whose columns q1, q2, . . . , qn−1

are the common components, Λk is a diagonal matrix whose diagonal elements

λ
(k)
1 , λ

(k)
2 , . . . , λ

(k)
n−1 are the specific weights (saliences) associated with the common com-

ponents and Ek, the residual matrix of the dataset Xk (k=1, 2, . . ., m).

It can be noticed from (2.6) that the number of common components is n-1. This is because

we assumed that the variables are centered and the number of individuals is less than the

total number of variables in all the datasets. But, in general, if n is the number of individ-

uals and p, the total number of variables of all the datasets (p = p1 + p2 + . . . + pk, k =

1, 2, . . . , m), then the number of dimensions (common components) is at most min

(n, p). Moreover, when variables are centered, the number of independent dimensions is

reduced from 1 (Kroonenberg, 2007, Hanafi and Qannari, 2008). Hence, if n < p and the

variables are centered, the number of dimensions is at most n-1.

For our example, since n=8, p=4+3+4+3=14; min (n, p) = 8 and variables are centered,

the number of common components is at most n-1=7.

The parameters to be estimated from the model of CCSWA (equation (2.6)) are the com-

mon components qr (r=1, 2, . . ., n-1) and the specific weights λ
(k)
r (k=1, 2, . . ., m; r=1,

2, . . ., n-1).
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Step 3: Choose an algorithm to estimate the parameters of CCSWA.

Three algorithms can be used to estimate these parameters: the iterative algorithm of

Qannari et al. (2000), the pseudo simultaneous and the simultaneous algorithm of Kissita

et al. (2009). The difference between the pseudo simultaneous and the simultaneous al-

gorithm is the objective function to be maximized. However, in a case study involving all

these three algorithms, Kissita et al. (2009) found similar results. Thus, we present in the

frame of this thesis, the iterative algorithm of Qannari et al. (2000).

Step 3a: Initialize the weights λ
(k)
1 (k = 1, 2, ..., m) to 1. Or choose m positive values,

instead of considering unit weights.

Step 3b: Extract the vector q1 given by the normed eigenvector of:

W =
m∑
k=1

λ
(k)
1 Wk (k = 1, 2, ..., m) (2.7)

associated with the largest eigenvalue.

Eigenvalues and eigenvectors can be extracted by means of a PCA on W. To perform the

PCA in R software, two methods can be used: the spectral decomposition (also known as

eigen-decomposition) and the singular value decomposition (SVD). The spectral decom-

position method is defined for square matrices (matrices in which the number of rows is

equal to the number of columns), whereas the SVD method works even with rectangular

matrices (matrices in which the number of rows is less than the number of columns or

vice versa). These two methods are simple to be implemented in R software but when

there is a choice among them, the SVD method is preferred for numerical accuracy (R

Development Core Team 2011).In R software, there are several functions from different

packages that allow us to perform PCA but they give almost the same results. Hence,

for our example, we used the SVD method with the ”svd” function of the base package.

The important arguments of that function are: the matrix on which we would like to per-

form the SVD and the number of left and right singular vectors to be computed. The left

singular vectors of a matrix W are given by the eigenvectors of W W’ whereas the right

singular vectors are given by the eigenvectors of W’ W (W’ being the transpose matrix of

W). The returned values of a SVD are: a matrix U that contains the left singular vectors,

a diagonal matrix D that contains the singular values and a matrix V that contains the

right singular vectors. The matrices U and V are orthonormal because U’ U=V’ V=I,

where I is the identity matrix (a matrix that contains only ones on its diagonal and zeros

on its off-diagonal).
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The singular values are sorted in a decreasing order. The first singular vector is associated

with the largest singular value; the second singular vector is associated with the second

largest singular value and so on. Since the SVD is performed on a square symmetric

matrix, we noted that the first left singular vector is always the same as the first right

singular vector.

As the singular values are positive, squaring them to obtain the eigenvalues will not change

the order of the associated singular vectors. Consequently, retaining the vector q1 associ-

ated with the largest eigenvalue of W is equivalent to retain the singular vector (either

the left or right singular vector because they are the same) associated with the largest

singular value. The vector q1 is called ”common component”. Its sign and length are arbi-

trary. But as the common components are constrained to be orthogonal, it is common to

normalize them to unit length. This operation consists of dividing each element of q1 by

its length (norm). But we should not wonder about this because by default vectors are

already normalized, when performing the SVD method in R software.

Step 3c: Update the previous weights by:

λ
(k)
1 = q′1Wkq1 (2.8)

In this formula: q1 is the common component computed in step 3b, q′1 is its transpose, Wk

is the scalar product matrix associated with the dataset Xk (k=1, 2, . . ., m) and λ
(k)
1 is the

weight of each dataset Xk (k=1, 2, . . ., m) in the computation of the common component

q1.

Step 3d: Evaluate the loss function as:

L1 =
m∑
k=1

‖Wk − λ(k)1 q1q
′
1‖2

L1 =
m∑
k=1

‖Wk‖2 − 2
m∑
k=1

λ
(k)
1 trace(Wkq1q

′
1) +

m∑
k=1

(λ
(k)
1 )2

But λ
(k)
1 = trace (Wkq1q

′
1)

Hence:

L1 =
m∑
k=1

‖Wk‖2 −
m∑
k=1

(λ
(k)
1 )2 (2.9)

In L1,
∑m

k=1 ‖Wk‖2 is the total inertia contained in all the datasets, whereas
∑m

k=1(λ
(k)
1 )2

is the total inertia of all the datasets explained by q1. So L1 is the total inertia of all the
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datasets not explained by q1.

At this level, the user can fix a threshold ε in order to break the iterative loop. The default

value used is ε = 10−10 (Qannari et al., 2000).

� If L1 < ε , the computation of the common component q1 is completed; we reach

the convergence and the algorithm stops. Thus, the common component q1 is given

by the common component that was extracted in step 3b and the specific weight of

each dataset Xk (k = 1, 2, . . . , m) in the computation of this common component

q1 is given by the weights computed in step 3c.

� If L1 ≥ ε, the algorithm starts from step 3b but instead of using the unit weight

for each dataset, we consider the weights that were computed in step 3c and we

reiterate this algorithm until the convergence.

Since the datasets are normalized, the salience of a dataset for a given common component

is the percentage of the total inertia of that dataset explained by the considered common

component (here is the advantage of dataset normalization for results interpretation that

we stated above in step 1). A high salience of a given dataset and for a given common com-

ponent, a great importance this dataset has for that common component. The saliences

are always positive or null. When the salience of a dataset in the computation of a given

common component is null, this means that the considered dataset is not underlying to

that common component. And therefore, the spelling «common components» can be seen

as an excessive use.

For our example, the previous algorithm was reiterated seven times before reaching the

convergence for the common component q1. At the convergence, the loss function is equal

to L1 = 6.26 10−12, the largest singular value is equal to 1.541 and the associated eigen-

vector is given by:

q1 = [ 0.714 −0.184 0.445 −0.332 −0.022 −0.263 −0.263 −0.097 ] (2.10)

Thus, the specific weight of the dataset 1, 2, 3 and 4 in the computation of the common

component q1 is respectively: λ
(1)
1 = 0.670, λ

(2)
1 = 0.664, λ

(3)
1 = 0.780 and λ

(4)
1 = 0.205.

This means that 67 %, 66.4 %, 78 % and 20.5 % of the total inertia contained respectively

in the datasets 1, 2, 3 and 4 is explained by the common component q1.

Step 3e: Apply a deflation procedure on Yk (k=1, 2, . . ., m) in order to determine the

common component q2 and the specific weights λ
(k)
2 (k = 1, 2, . . . , m). This deflation
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procedure consists of considering the datasets:

Y
(2)
k = Yk − q1q′1Yk (k = 1, 2, . . . ,m) (2.11)

that contain the residuals of the orthogonal projection of the variables of Yk (k=1, 2, . . .,

m) on the common component q1. In other words, for a given dataset Yk, the first column

(variable) of Y
(2)
k is given by the residuals obtained from a simple linear regression where

the response variable is the first column (variable) of Yk and the explanatory variable is

the common component q1. The second column of Y
(2)
k is given by the residuals obtained

from a simple linear regression where the response variable is the second column of Yk

and the explanatory variable is the common component q1, and so on. The residuals are

used here in order to take into account the information that was left for the previous

common component q1. In doing so, this deflation procedure ensures the orthogonality

of the common components (avoiding thus, the redundancy of the information on the

common components).

For our example, the dataset obtained after the first deflation of Y1 is:

Y
(2)
1 =



−0.015 −0.040 0.043 0.068

−0.038 −0.017 −0.082 −0.030

0.037 −0.014 −0.024 −0.107

−0.010 −0.013 −0.021 0.131

−0.069 0.180 −0.042 −0.003

0.074 0.128 −0.101 −0.190

−0.023 −0.261 0.287 0.004

0.043 0.037 −0.060 0.127


(2.12)

Thereafter, we compute the scalar product matrix:

W
(2)
k = X

(2)
k X

(2)′

k (2.13)

associated with Y
(2)
k (k=1, 2, . . ., m).
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For our example, we obtained the scalar product matrix W
(2)
1 associated with Y

(2)
k as:

W
(2)
1 =



0.008 −0.004 −0.008 0.009 −0.008 −0.024 0.023 0.004

−0.004 0.009 0.004 −0.002 0.003 0.009 −0.018 −0.001

−0.008 0.004 0.014 −0.014 −0.004 0.024 −0.004 −0.011

0.009 −0.002 −0.014 0.018 −0.001 −0.025 −0.002 0.017

−0.008 0.003 −0.004 −0.001 0.039 0.023 −0.057 0.006

−0.024 0.009 0.024 −0.025 0.023 0.068 −0.065 −0.010

0.023 −0.018 −0.004 −0.002 −0.057 −0.065 0.151 −0.027

0.004 −0.001 −0.011 0.017 0.006 −0.010 −0.027 0.023


(2.14)

Finally, the common component q2 and the associated specific weights λ
(k)
2 (k=1, 2, . . .,

m) are estimated by using the same above algorithm (from step 3a to step 3d) but by

taking into account the scalar product matrices W
(2)
k instead of Wk (k=1, 2, . . ., m).

The loss function for the common component q2 is defined as:

L2 =
m∑
k=1

‖W (2)
k − λ

(k)
1 q1q

′
1 − λ

(k)
2 q2q

′
2‖2

=
m∑
k=1

‖W (2)
k ‖

2 −
m∑
k=1

2∑
i=1

(λ
(k)
i )2

L2 = L1 −
m∑
k=1

(λ
(k)
2 )2 (2.15)

For our example, the previous algorithm was reiterated sixteen times before reaching the

convergence for the common component q2. At the convergence, the loss function is equal

to L2 = 1.3 10−11, 0.230 is the largest singular value and the vector associated with that

singular value is:

q2 = [ −0.247 0.51 0.398 0.155 0.108 −0.38 0.036 −0.582 ] (2.16)

Thus, the specific weight of the dataset 1, 2, 3 and 4 in the computation of the common

component q2 is respectively: λ
(1)
2 = 0.012, λ

(2)
2 = 0.041, λ

(3)
2 = 0.061 and λ

(4)
2 = 0.474.

So, 1.2 %, 4.1 %, 6.1 % and 47.4 % of the total inertia contained respectively in the

datasets 1, 2, 3 and 4 is explained by the common component q2.

Step 3f: Determine the common component q3 and the specific weights λ
(k)
3 , by consid-

ering the datasets

Y
(3)
k = Yk − q1q′1Yk − q2q′2Yk (k = 1 , 2, . . . ,m) (2.17)
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that contain the residuals of the orthogonal projection of the variables of Yk (k=1, 2, . . .,

m) on the common components q1 and q2.

In other words, for a given dataset Yk, the first column of Y
(3)
k is the residuals obtained

from a multiple linear regression where the response variable is the first column of Yk and

the explanatory variables are the common components q1 and q2. The second column of

Y
(3)
k is given by the residuals of a multiple linear regression where the response variable

is the second column of Yk and the explanatory variables are the common components q1

and q2. The third and subsequent columns of Y
(3)
k are found in the same way.

For our example, the dataset obtained after the second deflation of Y1 is:

Y
(3)
1 =



−0.030 −0.056 0.046 0.054

−0.005 0.016 −0.089 −0.001

0.062 0.013 −0.029 −0.085

0.000 −0.002 −0.023 0.139

−0.062 0.187 −0.043 0.004

0.050 0.102 −0.096 −0.211

−0.021 −0.258 0.286 0.006

0.006 −0.002 −0.052 0.094


(2.18)

On the obtained datasets, we compute the scalar product matrices:

W
(3)
k = Y

(3)
k Y

(3)′

k (k = 1 , 2, . . . ,m)

For our example:

W
(3)
1 =



0.009 −0.005 −0.009 0.007 −0.011 −0.023 0.029 0.003

−0.005 0.008 0.003 0.002 0.007 0.010 −0.030 0.004

−0.009 0.003 0.012 −0.011 0.000 0.025 −0.013 −0.006

0.007 0.002 −0.011 0.020 0.001 −0.027 −0.005 0.014

−0.011 0.007 0.000 0.001 0.041 0.020 −0.060 0.002

−0.023 0.010 0.025 −0.027 0.020 0.067 −0.056 −0.015

0.029 −0.030 −0.013 −0.005 −0.060 −0.056 0.149 −0.014

0.003 0.004 −0.006 0.014 0.002 −0.015 −0.014 0.012


(2.19)

Finally, we repeat again the same algorithm (from step 3a to step 3d) by considering the

scalar product matrices W
(3)
k instead of Wk (k=1, 2, ..., m).

The previous algorithm was reiterated 5 times before reaching the convergence for the
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common component q3. At the convergence, the loss function is equal to L3 = 8.8 10−11,

the largest singular value is 0.174 and the common component q3 is given by:

q3 = [ −0.252 0.210 0.187 −0.001 0.214 0.197 −0.834 0.279 ] (2.20)

Thus, the specific weight of the dataset 1, 2, 3 and 4 in the computation of the common

component q3 is respectively: λ
(1)
3 = 0.191, λ

(2)
3 = 0.216, λ

(3)
3 = 0.110 and λ

(4)
3 = 0.280.

This means that 19.1 %, 21.6 %, 11 % and 28 % of the total inertia contained respectively

in the datasets 1, 2, 3 and 4 is explained by the common component q3.

At step r (r=n-1, n being the number of individuals), the common component qr and the

specific weights λ
(k)
r are determined by considering the scalar product matrices:

W
(r)
k = X

(r)
k X

(r)′

k (2.21)

where

X
(r)
k = Xk −

∑
i<r

qiq
′
iXk (2.22)

k=1, 2, . . ., m and r=1, 2, . . ., n-1.

The loss function is evaluated as:

Lr =
m∑
k=1

‖W (r)
k −

r∑
i=1

λ
(k)
i qiq

′
i‖2

=
m∑
k=1

‖W (r)
k ‖

2 −
m∑
k=1

r∑
i=1

(λ
(k)
i )2

Lr = Lr−1 −
m∑
k=1

(λ(k)r )2 (2.23)

For our example, n=8. So, we have r=7 common components and the dataset obtained

after the sixth deflation of Y1 is:

Y
(7)
1 =



0.001 0.000 −0.001 0.000

−0.021 −0.001 0.013 −0.007

0.011 0.001 −0.007 0.004

0.034 0.002 −0.020 0.011

−0.015 −0.001 0.009 −0.005

0.009 0.001 −0.006 0.003

−0.009 −0.001 0.005 −0.003

−0.012 −0.001 0.007 −0.004


(2.24)
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The scalar product matrix of Y
(7)
1 is:

W
(7)
1 =



0 0.000 0.000 0.000 0.000 0 0 0.000

0 0.001 0.000 −0.001 0.000 0 0 0.000

0 0.000 0.000 0.001 0.000 0 0 0.000

0 −0.001 0.001 0.002 −0.001 0 0 −0.001

0 0.000 0.000 −0.001 0.000 0 0 0.000

0 0.000 0.000 0.000 0.000 0 0 0.000

0 0.000 0.000 0.000 0.000 0 0 0.000

0 0.000 0.000 −0.001 0.000 0 0 0.000


(2.25)

The same algorithm (from step 3a to step 3d) applied on W
(7)
k , was reiterated twice

to reach the convergence for the common component q7. At the convergence, the loss

function was evaluated to L7 = 1.6 10−34, the largest singular value equals to 0.0004 and

the common component q7 is given by:

q7 = [ −0.031 0.446 −0.239 −0.717 0.307 −0.198 0.184 0.248 ] (2.26)

The specific weight of the dataset 1, 2, 3 and 4 in the computation of the common

component q7 is respectively: λ
(1)
7 = 0.003, λ

(2)
7 = 0.014, λ

(3)
7 = 0.012 and λ

(4)
7 = 0.005.

So, 0.3 %, 1.4 %, 1.2 % and 0.5 % of the total inertia contained respectively in the datasets

1, 2, 3 and 4 is explained by the common component q7.

Some properties of common components and specific weights are presented in Hanafi and

Qannari (2008).

At step r:

i : (
m∑
k=1

λ(k)r W
(r)
k ) qr = µmax

r qr (2.27)

where µmax
r is the largest eigenvalue of

∑m
k=1 λ

(k)
r W

(r)
k associated with the eigenvector qr

ii : λ(k)r = q′rWkqr (2.28)
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iii : Lr =
m∑
k=1

‖Wk −
r∑

i=1

λ
(k)
i qiq

′
i‖2 =

m∑
k=1

‖Wk‖2 −
m∑
k=1

r∑
i=1

(λ
(k)
i )2

Lr =
m∑
k=1

‖Wk‖2 −
r∑

i=1

µmax
i (2.29)

From these properties, it appears that the relative importance of the common component

qr (r=1, 2, . . ., n-1) can be evaluated as:

Vr =

∑m
k=1(λ

(k)
r )2∑m

k=1 ‖Wk‖2
=

µmax
r∑m

k=1 ‖Wk‖2
, r = 1, 2, . . . , n− 1. (2.30)

The numerator µmax
r is the singular value of the common component qr (r=1, 2, . . ., n-1)

and the denominator
∑m

k=1 ‖Wk‖2 is the total inertia of all the datasets. The singular

value of the common component q1, q2, . . ., q7 is respectively: 1.541, 0.230, 0.174, 0.009,

0.001, 0.001 and 0.0004. And, the variance (inertia) of a given dataset Xk is computed as:

‖Wk‖2 (k=1, 2, . . ., m).

For our example, the variance of X1, X2, X3 and X4 is respectively: 0.597, 0.549, 0.685

and 0.429. Thus, the total inertia of all the datasets is 0.597+0.549+0.685+0.429=2.26.

So, the relative importance of the common component q1, q2, . . ., q7 is respectively:
1.541
2.26

= 68.197 %; 0.230
2.26

= 10.174 %; 0.174
2.26

= 7.693 %; 0.009
2.26

= 0.402 %; 0.0015
2.26

= 0.066 %;
0.001
2.26

= 0.044 % and 0.0004
2.26

= 0.016 %.

Note that, the formula used to compute the relative importance of the common compo-

nents is different from the one used to evaluate the importance of principal components

or common factors in PCA and MFA respectively. Indeed, in PCA and MFA, once the

eigenvalues are determined, the importance of a dimension is given by the eigenvalue of

that dimension divided by the sum of all the eigenvalues.

Step 4: Compute a compromise matrix.

After estimating the common components and the specific weights, a compromise matrix

C is computed as: C = Q
√
D, where Q is a (n, n-1) matrix of common components, D is

a (n-1, n-1) diagonal matrix of the mean saliences per dimension, and n, the number of

individuals.

For our example n=8, so the size of Q and D is respectively (8, 7) and (7, 7).
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Q =



−0.714 −0.247 −0.252 −0.163 −0.008 −0.461 −0.031

0.184 0.510 0.210 −0.089 −0.418 −0.394 0.446

−0.445 0.398 0.187 0.291 −0.162 0.562 −0.239

0.332 0.155 −0.001 −0.456 0.076 −0.117 −0.717

0.022 0.108 0.214 −0.024 0.849 0.035 0.307

0.263 −0.380 0.197 0.710 −0.052 −0.277 −0.198

0.263 0.036 −0.834 0.123 −0.022 0.245 0.184

0.097 −0.582 0.279 −0.392 −0.263 0.406 0.248


(2.31)

D =



0.58 0.000 0.000 0.000 0.000 0.000 0.000

0.00 0.147 0.000 0.000 0.000 0.000 0.000

0.00 0.000 0.199 0.000 0.000 0.000 0.000

0.00 0.000 0.000 0.037 0.000 0.000 0.000

0.00 0.000 0.000 0.000 0.016 0.000 0.000

0.00 0.000 0.000 0.000 0.000 0.012 0.000

0.00 0.000 0.000 0.000 0.000 0.000 0.008


(2.32)

Hence we obtain a (8, 7) compromise matrix C:

C =



−0.544 −0.095 −0.113 −0.032 −0.001 −0.051 −0.003

0.140 0.196 0.094 −0.017 −0.053 −0.044 0.041

−0.339 0.153 0.094 0.056 −0.021 0.062 −0.022

0.253 0.059 0.000 0.088 0.010 −0.013 −0.065

0.017 0.042 0.096 −0.005 0.108 0.004 0.028

0.200 −0.145 0.088 0.137 −0.007 −0.031 −0.018

0.200 0.014 −0.372 0.024 −0.003 0.027 0.017

0.074 0.223 0.124 −0.076 −0.033 0.045 0.023


(2.33)

This compromise also known as a ”consensus” is used to compute the correlation between

the initial variables of different datasets and the common components on the one hand and

the Escoufier RV coefficient between each dataset and this compromise on the other hand.

The Escoufier RV coefficient is the generalization of squared Pearson correlation coefficient

and takes values in the range 0 and 1. This coefficient can be used to compare matrices.

But, before comparing two rectangular matrices using the Escoufier RV coefficient, we

must first of all transform them into positive semi-definite matrices (square matrices) by

19



multiplying each matrix by its transpose (Abdi, 2007).

For example, if we wish to compute the RV coefficient between the (8, 4) matrix Y1 and

(8, 7) matrix C, the first step is to compute: S = Y1Y
′
1 and T = CC ′. Then, use the

following formula:

RV =
trace{S ′T}√

(trace{S ′S})(trace{T ′T})
=

trace{Y1Y ′1CC ′}√
(trace{Y1Y ′1Y1Y ′1})(trace{CC ′CC ′})

= 0.886

The trace operation is applied to square matrices and gives the sum of the diagonal ele-

ments. In R software, the Escoufier RV coefficient between Y1 and the compromise C can

be computed using the ”coeffRV” function of the FactoMineR package: coeffRV(Y1, C)$rv.

For our example, this coefficient of the second, third and fourth dataset with the compro-

mise C is respectively 0.930, 0.926 and 0.593. The Escoufier RV coefficient of the dataset

Y2 with the compromise is equal to 0.93. So, 0.93 is the amount of variance that the

dataset Y2 shares with the compromise C.
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CHAPTER 3

Materials and methods

3.1 Description of data related to farmers’ percep-

tion of land degradation and soil erosion

The data sample considered to present the application of CCSWA is related to farmers’

perception of land degradation and soil erosion in northern Benin (Avakoudjo et al., 2011).

A total number of 136 farmers from 5 sociocultural groups were interviewed on their opin-

ion on various causes and factors of land degradation and soil erosion in their farms and

in surrounding areas. They were also interviewed on different cultivation techniques they

adopt against the soil erosion and techniques that can be used to improve the soil fertility

and crops productivity. Variables on which they were interviewed are presented in Table

3.1 below.

Thus, 4 datasets were formed, each bearing on the same individuals. The number of vari-

ables of these datasets are different. Dataset 1 (Table 3.2) is related to the causes of land

degradation and has 4 variables (Erosion, Deforest, Agricset and Wildfire). Dataset 2 (Ta-

ble 3.3) is related to soil erosion factors and has 4 variables (Stamping, Run-off, Soiltype,

Slope). Dataset 3 (Table 3.4) is linked to the land use practices with 3 variables (Land-

cover, Orthogcult and Stonyline). And dataset 4 (Table 3.5) describes the techniques of

improvement of the soil fertility and crops productivity with 7 variables (Fallow, Fertiliz-

ers, Manure, Rubbish, Penning, Plow and Cart). These 4 datasets are presented in Tables

3.2, 3.3, 3.4 and 3.5 below and were used to present the application of CCSWA. Values

inside these tables are the percentage of positive responses of the considered sociocultural

group to the considered variable. For example in Table 3.2, 92.9 that is in the cross of

the first row (Dendi) and the first column (Erosion) means that: 92.9 % of Dendi farmers

think that land degradation is due to erosion. We provide in Figure 3.1, some photos to

show an example of: run-off, erosion, deforestation, wildfire, stony line, plow and cart.
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Table 3.1: Variables of the application datasets

Short name Long name/ definition

Erosion is the process by which the surface of the earth is worn away

for example by the action of water and winds

Deforest Deforestation/ is the removal of a forest or stand of trees, where the land

is thereafter converted to a non-forest use

Agricset Agricultural settlement/ is one of the use after removing a forest

Wildfire is a fire burning in a wild area of land that is difficult to control and

sometimes spreads quickly

Stamping Animal stamping/ is the action of bringing animal foots down onto the soil

surface forcibly.

Run-off is a phenomenon of the flow of the water on the soil surface

Soiltype Soil type/ is the different sizes of mineral particles in a particular sample

Slope is a typographic factor that favors the erosion. It increases the speed of the flow

Landcover Land cover/ is the physical material at the surface of the earth

Orthogcult Orthogonal cultivation/ is a technique that is used to decelerate the flow

of the water

Stonyline Stony line/ is a practice that consists of placing stones in one or more rows along

the level curves

Fallow is the land that has undergone plowing and harrowing and has been left

unseeded for one or more growing seasons

Fertilizers are any material of natural or synthetic origin that are applied to soils

or plants to supply one or more plant nutrients essential to their growth

Manure is the organic matter mostly derived from animal feces (for example the chicken

manure and the cow dung) and which contributes to the soil fertility

Rubbish Household rubbishes/ are solid waste comprising of garbage such as compost,

disposables, food packaging, food scraps

Penning is the action of bringing animals in a field to use the vegetal resources

for their feeding

Plow is a machine that is used to turn and break up soil, to bury crop residues

and to help control weeds

Cart is a two-wheeled vehicle drawn by an animal or individuals and used

in farm work and for transporting goods
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Figure 3.1: Photos of: a. Run-off- b. Erosion- c. Deforestation- d. Wildfire- e. Stony line-

f. Plow- g. Cart
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Table 3.2: Causes of land degradation

Erosion Deforest Agricset Wildfire

Dendi 92.9 76.8 91.1 37.5

Djerma 100 70 90 40

Gourmanche 90.3 74.2 90.3 25.8

Haussa 88.9 88.9 77.8 22.2

Peulh 80 70 86.7 23.3

Table 3.3: Soil erosion factors

Stamping Run-off Soiltype Slope

Dendi 46.4 82.1 39.3 80.4

Djerma 30 100 10 90

Gourmanche 25.8 80.6 45.2 90.3

Haussa 22.2 77.8 33.3 66.7

Peulh 30 80 33.3 83.3

Table 3.4: Land use practices

Landcover Orthogcult Stonyline

Dendi 57.1 60.7 8.9

Djerma 60 90 20

Gourmanche 45.2 77.4 12.9

Haussa 44.4 88.9 44.4

Peulh 56.7 90 3.3

Table 3.5: Techniques of improvement of the soil fertility and crops productivity

Fallow Fertilizers Manure Rubbish Penning Plow Cart

Dendi 48.2 30.4 60.7 51.8 83.9 76.8 50

Djerma 30 30 40 30 90 80 50

Gourmanche 45.2 38.7 51.6 54.8 77.4 67.7 32.3

Haussa 44.4 22.2 77.8 66.7 88.9 44.4 22.2

Peulh 30 36.7 60 56.7 86.7 70 46.7
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3.2 Statistical analysis

PCA and CCSWA have been applied on the above four datasets (Tables 3.2, 3.3, 3.4 and

3.5) in order to compare the results obtained from the 2 analyses and show the improve-

ment of CCSWA compared to PCA. For PCA, we horizontally merged these 4 datasets

and used correlation matrix (each variable is centered and scaled). Variable scaling con-

sists of dividing each entry of that variable by its standard deviation. Before applying

CCSWA, each variable was centered. Then, each dataset was normalized. The normaliza-

tion consisted of giving more weight to smaller datasets so that the inertia of each dataset

is set up to 1 (Hanafi and Qannari, 2008). All the analyses were done in R version 3.0.2

(R Core Team, 2013). The scripts used to perform PCA and CCSWA are presented in

appendix.
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CHAPTER 4

Results and discussion

4.1 Results of CCSWA performed on the 4 datasets

Table 4.1 below presents the saliences of each dataset on the 4 common components of

CCSWA applied on the 4 datasets. As each dataset is normalized, each salience can be

seen as the percentage of the total inertia of a given dataset restituted by the considered

common component. Based on these saliences, one can assess the relationships between

different datasets. From this table, it appears that the common component q1 explained

60.4 %, 45.3 %, 10 % and 73.5 % of the variability in datasets 1, 2, 3 and 4 respectively.

Thus, the common structure highlighted by q1 has been identified in datasets 1, 2 and 4.

However, the common component q2 expressed 70 % of the total inertia of dataset 3, 30.8

% of the total inertia of dataset 2 and a relatively low percentage of the total inertia of the

remaining datasets (5.4 % and 9.4 % of datasets 1 and 4 respectively). So, the common

structure highlighted by q2 has been identified in datasets 2 and 3. It can be concluded that

datasets 1, 2 and 4 give higher importance (weight) to the common component q1 whereas

datasets 2 and 3 give higher importance to the common component q2. Consequently,

farmers who perceive well the causes of land degradation, have a good knowledge of soil

erosion factors and techniques that can be used to improve the soil fertility and crops

productivity. But these farmers do not have necessarily a good knowledge of adaptation

measures to overcome the soil erosion, since the dataset 3 weights heavily the common

component q2.
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Table 4.1: Saliences and relative importance of the four common components of CCSWA

performed on the 4 datasets

Dim 1 Dim 2 Dim 3 Dim 4

Dataset 1 Saliences 0.604 0.054 0.307 0.035

Cumul. 0.604 0.658 0.965 1

Dataset 2 Saliences 0.453 0.308 0.134 0.106

Cumul. 0.453 0.761 0.895 1

Dataset 3 Saliences 0.1 0.7 0.192 0.008

Cumul. 0.1 0.8 0.992 1

Dataset 4 Saliences 0.735 0.094 0.081 0.089

Cumul. 0.735 0.829 0.91 1

Relative importance Values 0.532 0.284 0.074 0.0097

Cumul. 0.532 0.816 0.89 0.899

With the first two common components, at least 65.8 % of the total inertia contained in

each dataset is explained (65.8 %, 76.1 %, 80 % and 82.9 % of the total inertia contained

in datasets 1, 2, 3 and 4 respectively). Based on the (cumulative) relative importance of

the first two common components, 81.6 % of the total inertia contained in the 4 datasets

is explained. Thus, retaining the first two common components is sufficient for a good

synthesis of the analysis. The graphical representation of the 4 datasets based on their

saliences on the first two common components of CCSWA performed on the 4 datasets is

presented in Figure 4.1.
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Figure 4.1: Representation of datasets based on their saliences on the first two common

components of CCSWA performed on the 4 datasets.

In order to interpret the common components, it is important to examine correlations

between the initial variables of each dataset and these common components. These corre-

lations are presented in Table 4.2. Values highlighted in boldface are correlations between

initial variables and common components that are deemed important (greater or equal to

0.5 in absolute value). The sign of the correlation coefficient is just an indicator of the

side of the axis on which each variable should be interpreted.
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Table 4.2: Correlations between initial variables and the four common components of

CCSWA performed on the 4 datasets.

Dim.1 Dim.2 Dim.3 Dim.4

Erosion -0.589 -0.016 -0.746 0.311

Deforest 0.820 -0.082 -0.566 0.011

Agricset -0.820 -0.417 0.294 0.259

Wildfire -0.841 -0.286 -0.452 -0.079

Stamping -0.442 -0.827 -0.040 -0.346

Run-off -0.857 0.365 -0.365 -0.006

Soiltype 0.587 -0.605 0.420 0.336

Slope -0.808 0.047 0.418 0.412

Landcover -0.106 0.962 0.242 0.061

Orthogcult 0.107 0.979 0.082 -0.151

Stonyline 0.556 0.384 -0.733 0.077

Fallow 0.484 -0.711 -0.308 0.406

Fertilizers -0.367 -0.109 0.852 0.357

Manure 0.928 -0.167 -0.132 -0.306

Rubbish 0.958 -0.196 0.206 -0.032

Penning -0.081 0.489 -0.463 -0.735

Plow -0.937 -0.262 0.225 -0.041

Cart -0.846 -0.256 0.205 -0.421

The scores of different sociocultural groups are presented in Table 4.3. These scores are the

common components (eigenvectors associated with the largest eigenvalues of the weighted

association matrices, as described in the principle).

Table 4.3: Scores of different sociocultural groups (common components)

Dim 1 Dim 2 Dim 3 Dim 4

Dendi -0.146 -0.833 -0.187 -0.223

Djerma -0.680 0.448 -0.371 -0.019

Gourmanche 0.058 -0.064 0.312 0.834

Haussa 0.715 0.246 -0.468 -0.096

Peuhl 0.052 0.203 0.715 -0.495
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The graphical representation of different sociocultural groups in the system axes defined

by the first two common components is presented in Figure 4.2. From that figure, one can

assess the existing relationships between individuals.
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Figure 4.2: Projection of sociocultural groups in the system axis defined by the first two

common components of CCSWA performed on the 4 datasets.

To interpret this Figure 4.2, we evaluate the contribution of each sociocultural group in the

computation of each common component. If we denote by sij the score of the sociocultural

group i on the common component j and cij the contribution of the sociocultural group i
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in the computation of the common component j (i=1, 2, . . ., 5 and j=1, 2, 3, 4), then

cij =
s2ij∑n
i=1 s

2
ij

.

But as the length of each common component is equal to 1, the sum of the squared

scores is equal to 1. Hence, we merely square the scores of sociocultural groups on each

common component (Table 4.3). The mean contribution of each sociocultural group in

the computation of each common component is: c = 1
5

= 0.2.

Thus, the contribution of a sociocultural group i in the computation of a common com-

ponent j is deemed important if and only if cij ≥ c.

Table 4.4 presents the contribution of each sociocultural group in the computation of each

common component. For a given common component, only sociocultural groups for which

the contributions are highlighted in boldface will be interpreted. For a given common com-

ponent, the sign of scores of the retained sociocultural groups (Table 4.3) is an indicator

of the side of that common component on which they will be interpreted.

Table 4.4: Contribution of sociocultural groups in the computation of each common com-

ponent of CCSWA performed on the 4 datasets.

Dim 1 Dim 2 Dim 3 Dim 4

Dendi 0.021 0.694 0.035 0.050

Djerma 0.462 0.200 0.138 0.000

Gourmanche 0.003 0.004 0.097 0.695

Haussa 0.511 0.061 0.219 0.009

Peuhl 0.003 0.041 0.511 0.245

The biplot of CCSWA is presented in Figure 4.3. This figure, shows how different socio-

cultural groups express their perception of land degradation and soil erosion by means of

different variables. Only variables and individuals that are surrounded in each side of the

2 axes will be interpreted.
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Figure 4.3: Biplot of CCSWA performed on the 4 datasets

The common component q1 sets apart Djerma from Haussa farmers. Farmers from the

two sociocultural groups are those who perceive well the causes of land degradation,the

soil erosion factors and the techniques to be used in order to enhance the soil fertility

and crops productivity. Djerma farmers think that land degradation is due to the erosion,

agricultural settlement and wildfire. Run-off and slope are the main soil erosion factors ac-

cording to them. They also think that crops productivity can be enhanced by using plows

and carts. Regarding Haussa farmers, deforestation is the main cause of land degradation

whereas soil type is the main soil erosion factor. To overcome this, they set up stony lines

and use manure and household rubbishes to improve the soil fertility and crops produc-
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tivity. The common component q2 is mainly related to the soil erosion factors and land

use practices. Only Dendi and Djerma farmers account for this common component, but

they are opposed. Dendi farmers acknowledge animal stamping and soil type as main soil

erosion factors and practice fallow to improve the soil fertility and crops productivity. As

regards Djerma farmers, they cover their lands and till orthogonally to the normal flow

of water in order to overcome soil erosion.
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4.2 Results of PCA performed on the 4 datasets

Table 4.5 presents correlations between initial variables and the first four axes of PCA per-

formed on the 4 datasets. The biplot, showing associations between sociocultural groups

and initial variables is presented in Figure 4.4. In this figure, only variables and individuals

that are surrounded in each side of the 2 axes will be interpreted. In Table 4.5, values

highlighted in boldface are correlations between initial variables and principal components

that are deemed important (greater or equal to 0.5 in absolute value).

Table 4.5: Correlations between initial variables and the first four axes of PCA performed

on the 4 datasets

Dim 1 Dim 2 Dim 3 Dim 4

Erosion 0.467 -0.251 0.678 0.509

Deforest -0.894 -0.022 0.427 0.131

Agricset 0.890 0.435 -0.032 0.130

Wildfire 0.769 -0.028 0.637 0.027

Stamping 0.471 0.590 0.500 -0.423

Run-off 0.759 -0.565 0.279 0.164

Soiltype -0.459 0.844 -0.257 0.109

Slope 0.873 0.100 -0.365 0.307

Landcover 0.083 -0.776 -0.611 0.130

Orthogcult -0.161 -0.871 -0.463 -0.032

Stonyline -0.690 -0.516 0.402 0.310

Fallow -0.468 0.685 0.428 0.359

Fertilizers 0.519 0.437 -0.727 0.105

Manure -0.933 0.148 0.128 -0.302

Rubbish -0.897 0.361 -0.214 -0.137

Penning -0.050 -0.785 0.355 -0.506

Plow 0.975 0.187 0.036 -0.113

Cart 0.870 0.097 0.113 -0.471
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Figure 4.4: Biplot of PCA performed on the 4 datasets

PCA performed on the 4 datasets showed that the first two principal components explained

73.89 % of the total inertia contained in the initial dataset. So, with the first two axes, we

have a good synthesis of the analysis. The first axis contrasts Haussa to Djerma farmers.

Haussa farmers consider deforestation as the main cause of land degradation; they set

up stony lines to overcome the soil erosion and use manure and household rubbishes to

improve the soil fertility and crops productivity. However, according to Djerma farmers,

the main causes of land degradation are agricultural settlement and wildfire. They consider

the run-off and slope as the main soil erosion factors and use fertilizers, plow and cart

to improve the soil fertility and crops productivity. The second axis contrasts Djerma
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to Dendi farmers. Djerma farmers recognize the run-off as the main soil erosion factor.

Against soil erosion, they cover their lands, till orthogonally to the normal flow of the

water and set up stony lines. They practice the penning in order to improve the soil

fertility and crops productivity. Dendi farmers find animal stamping and soil type as the

main soil erosion factors and practice the fallow to improve the soil fertility and crops

productivity.

4.3 Comparison of PCA and CCSWA based on their

outputs

Table 4.6 presents the percentage and cumulative percentage of total inertia explained by

the dimensions of PCA and CCSWA performed on the 4 datasets.

Table 4.6: Percentage and cumulative percentage of total variance explained by

the dimensions of PCA and CCSWA performed on the 4 datasets.

PCA CCSWA

% of inertia explained Cumul. % of inertia explained Cumul.

Dim 1 47.530 47.530 53.243 53.243

Dim 2 26.356 73.886 28.365 81.608

Dim 3 18.002 91.888 7.388 88.996

Dim 4 8.112 100.000 0.973 89.969

It can be seen from this table that the cumulative percentage of inertia explained by the

first two dimensions is larger in CCSWA than in PCA.

Common components and specific weights method can be used to perform the analysis in

individual level and the analysis in datasets level. The analysis in individual level consists

of looking at the relationships between individuals. The examination of the associations

between the individuals and variables through the PCA biplot and CCSWA biplot, shows

that the results of the two biplots are almost the same. The analysis in datasets level

consists of investigating the relationships between different datasets involved in the anal-

ysis. This can be achieved by looking at the way different datasets contribute to form the

common components. For that purpose, the saliences of each dataset in the computation

of common components are of paramount importance. Thus, the improvement of CCSWA

compared to PCA is the analysis in the datasets level.
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4.4 Discussion

Djerma farmers are those who perceive very well the causes of land degradation, the soil

erosion factors, the adaptation measures against the soil erosion and the techniques that

can be used to improve the soil fertility and crops productivity. This can be explained

by the fact that only few farmers of this sociocultural group were interviewed (10 over

136). It is also possible that the interviewed farmers of this sociocultural group are more

experienced in working with land. This idea is supported by Akinnagbe and Umukoro

(2011), Avakoudjo et al. (2011), who found that when the respondents are experienced

farmers; they have acquired enough farming experience needed to perceive the effect of

degradation on farming activities in their area, over the years. According to local percep-

tion of land degradation and soil erosion, Djerma farmers are followed by Haussa farmers.

It is somewhat surprising that although Dendi people are farmers in the study area and

the most interviewed people in the sample (56 over 136), they do not perceive well the

causes of land degradation, the land use practices and the techniques that can be used to

enhance the soil fertility and crops productivity. They only have a good knowledge of the

factors favoring soil erosion. This can be due to the fact that, those who were interviewed

work only with the land; they do not pay attention to the changes affecting their lands;

they are not experienced in working with land. Unlike the findings of Avakoudjo et al.

(2011) who stated that globally, all the sociocultural groups have the same perception of

land degradation and soil erosion, we find that the perception of land degradation and

soil erosion depends on sociocultural groups.

Finding almost the same results for CCSWA and PCA when assessing the relationships

between individuals is not surprising. It can be explained by the fact that the hierarchy

of 3 models developed by Qannari et al. (1995) are based on association matrices, which

show similarities between individuals. It is also worth noting that PCA on the horizontal

merged datasets is the solution of the first model whereas STATIS method is the solu-

tion led by the second model of this hierarchy. Moreover, it has been shown by Hanafi

and Qannari (2008) that the results of STATIS and CCSWA are almost the same, when

assessing the relationships between individuals.
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4.5 Conclusion

This analysis revealed that each sociocultural group has its way of understanding the

causes of land degradation, the soil erosion factors, the adaptation measures against soil

erosion and the techniques that can be used to improve the soil fertility and crops produc-

tivity. From CCSWA, datasets linked to the causes of land degradation, the soil erosion

factors, and the techniques to improve the soil fertility and crops productivity are re-

lated whereas they are independent to the dataset linked to the land use practices. PCA

cannot assess the relationships between different datasets. But, when investigating the

relationships between individuals, CCSWA and PCA give almost the same results.
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Appendix

#########################################################################

# #

# R Script to perform CCSWA: adapted from Qannari et al. (2000) #

# #

#########################################################################

# This function accps performs the CCSWA.

# The inputs of this function are:

# tab which is the dataset constituted of the number of individuals

# and the total number of variables of each dataset

# group contains the number of variables per dataset

# ndimension is the number of common components to print.

accps <- function (tab,group, ndimension) {

ntab=length(group); # Number of datasets

nind=nrow(tab) # Number of individuals

p=ncol(tab) # Total number of variables

ndim=min(nind,p)-1 # Number of dimensions

W=array(0,dim=c(nind,nind,ntab+1)); # Association matrices

LAMBDA=matrix(0,ntab,ndim); # Will contain the saliences

Q=matrix(0,nrow=nind,ncol=ndim); # Will contain the common components

Y<-scale(tab,center=TRUE, scale=F) # Each variable is centered

# J indicates to which block each variable belongs to.

J=rep(1:ntab , times = group )

# To set up the inertia of each dataset to 1

library(multigroup) # Load the package "multigroup"

for (j in 1:ntab) { Y[,J==j]=normM(Y[,J==j]) }
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# Computation of association matrices

for(j in 1:ntab) { Yj=as.matrix(Y[,J==j]); W[,,j]=Yj%*%t(Yj);}

Itot=0;

# Computation of the total variance of all dataset: sum(trace(Wj*Wj)

for (j in 1:ntab) { Itot=Itot+sum(as.matrix(W[,,j])^2) }

# Computation of the common components(Q)and specific weights(lambda)

explained<-matrix(0,ndim)

Res=NULL

for (dimension in 1:ndim) { previousfit=100000;

lambda=matrix(1, nrow=ntab); deltafit=1000000;

threshold=1e-10 # Default threshold in CCSWA

while(deltafit>threshold) { W[,,ntab+1]=matrix(0,nrow=nind,ncol=nind);

for (ta in 1:ntab){ W[,,ntab+1]=W[,,ntab+1]+lambda[ta]*W[,,ta] }

Ws=as.matrix(W[,,ntab+1])

# Perform the PCA

Svdw=svd(Ws)

# q extracts the eigenvector associated to the largest eigeivalue of Ws

q=as.matrix(Svdw$u[,1])

fit=0;

for (ta in 1:ntab) {

# Estimation of the residuals

lambda[ta]=t(q)%*%as.matrix(W[,,ta])%*%q;

aux=as.matrix(W[,,ta])-lambda[ta]*q%*%t(q);

fit=fit+sum(aux^2);

}

deltafit=previousfit-fit; previousfit=fit; } #deltafit>threshold

# Computation of the relative importance of each common component

explained[dimension,1]=100*sum(lambda^2)/Itot

LAMBDA[,dimension]=lambda; Q[,dimension]=q;
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# Deflation procedure: updating association matrices

aux=diag(1,nind)-q%*%t(q);

for (j in 1:ntab) { Y=as.matrix(Y)

Y[,J==j]=aux%*%Y[,J==j]; W[,,j]=Y[,J==j]%*%t(Y[,J==j]);}}

Res$Q=Q[,1:ndimension]; expl<-matrix(0,nrow=ndimension,ncol=2)

expl[,1]=explained[1:ndimension]; expl[,2]=cumsum(expl[,1])

Res$saliences=LAMBDA[,1:ndimension]

rownames(Res$Q)<-rownames(tab)

colnames(Res$Q)<-paste("Dim.",1:ndimension,sep="")

colnames(Res$saliences)<-paste("Dim.",1:ndimension,sep="")

rownames(Res$saliences)<-paste("Dataset ",1:ntab,sep="")

Res$expl<-expl

rownames(Res$expl)<-paste("Dim.",1:ndimension,sep="")

colnames(Res$expl)<-c("%Total Var expl", "Cumul % total Var")

# Computation of the compromise (overall agreement)

library(FactoMineR) # Load the package "FactoMineR"

LambdaMoyen<-apply(LAMBDA,2,mean)

D=diag(LambdaMoyen)

C=Q%*%sqrt(D) # Compromise

# Computation of the Escouffier RV coefficient

Rv<-matrix(0,nrow=ntab,ncol=1)

rownames(Rv)<-paste("Dataset ",1:ntab,sep="")

for(j in 1:ntab) { Yj=as.matrix(tab[,J==j]); resRV<-coeffRV(Yj,C)

Rv[j,1]<-resRV$rv }

Res$RV<-Rv

return(Res)

} # End of the program

# To call this funcion accps, one needs to provide its inputs:

# Data
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Y=matrix(c(92.857,76.7857,91.0714,37.5,46.4286,82.143 ,39.2857,

80.3571,7.1429,60.7143,8.9286,48.2143,30.3571,60.7143,51.7857,

83.9286,76.7857,50.0,100.0,70.0,90.0,40.0,30.0,100.0,10.0,90.0,

60.0,90.0,20.0,30.0,30.0,40.0,30.0,90.0,80.0,50.0,90.323,74.1935,

90.3226,25.8065,25.8065,80.645,45.1613,90.3226,45.1613,77.4194,

12.9032,45.1613,38.7097,51.6129,54.8387,77.4194,67.7419,32.2581,

88.889,88.8889,77.7778,22.2222,22.2222,77.778,33.3333,66.6667,

44.4444,88.8889,44.4444,44.4444,22.2222,77.7778,66.6667,88.8889,

44.4444,22.2222,80.0,70.0,86.6667,23.3333,30.0,80.0,33.3333,

83.3333,56.6667,90.0,3.3333,30.0,36.6667,60.0,56.6667,86.6667,

70.0,46.6667),nr=5,byrow=T,dimnames=list(c("Dendi","Djerma",

"Gourmanche","Haussa","Peulh"),c("Erosion","Deforest","Agricset",

"Wildfire","Stamping","Run-off","Soiltype","Slope","Landcover",

"Orthogcult","Stonyline","Fallow","Fertilizers","Manure","Rubbish",

"Penning","Plow","Cart")))

group=c(4,4,3,7) # Number of variables per dataset

ntab=length(group) # Number of datasets

res<-accps(Y,group, 4) # Call of the function

res # Print the results

#round(res£saliences,3)

# Computation of the contribution of individuals:

ci=res$Q^2; seuil_ind=1/nrow(ci)

# Individuals to be interpreted on each side of a given axis.

which(ci[, 1]>=seuil_ind & res$Q[, 1]<0)

which(ci[, 1]>=seuil_ind & res$Q[, 1]>0)

which(ci[, 2]>=seuil_ind & res$Q[, 2]<0)

which(ci[, 2]>=seuil_ind & res$Q[, 2]>0)

# Scree plot

plot(res$expl[,1], type="o", cex=2, pch=19, xaxt="n", xlab="",

ylab="", ylim=c(0,100))
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par(new=T)

plot(res$expl[,2], type="o", col="red", cex=2, pch=19, xaxt="n",

xlab="Dimension", ylab="Total variance restituted",

ylim=c(0,100),main="Scree plot"); axis(side=1, at=1:4)

legend("topleft", legend = c("Percentage of total variance explained",

"Cumulative percentage of total variance explained "),

lty=c(1,1), lwd=c(2.5,2.5),col=c("black","red"),bty = "n")

dev.new() # To avoid erasing the existing figure

#Saliences

S=res$saliences

plot(S[,1],S[,2], cex=1.25, pch=19, main="Representation of datasets in

the dimensions 1 and 2",

xlab=paste0("Dim 1 (", round(res$expl[1,1], 2), "%)"),

ylab=paste0("Dim 2 (", round(res$expl[2,1], 2), "%)"),xlim=c(0,0.8),

ylim=c(0,0.8))

text(S[,1],S[,2],rownames(S),cex=1 ,pos=1,offset=0.1)

# Computation of the compromise

LambdaMoyen<-apply(res$saliences,2,mean)

D=diag(LambdaMoyen); C=res$Q%*%sqrt(D)

x11() # To avoid erasing the existing figure

# Graphical representation of individuals in the dimensions 1 and 2

c1=C[,1]; c2=C[,2]

plot(c1,c2, cex=.8, pch=19, main="Representation of individuals in

the dimensions 1 and 2",

xlab=paste0("Dim 1(", round(res$expl[1,1], 2), "%)"),

ylab=paste0("Dim 2(", round(res$expl[2,1], 2), "%)"),xlim=c(-0.5,0.6))

#text(c1,c2,rownames(Y),cex=1,pos=3,offset=0.2)

#abline(h=0,v=0)

text(c1[1],c2[1],"Dendi",cex=1,pos=3,offset=0.3)

text(c1[2],c2[2],"Djerma",cex=1,pos=1,offset=0.2)

text(c1[3],c2[3],"Gourmanche",cex=1,pos=1,offset=0.2)
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text(c1[4],c2[4],"Haussa",cex=1,pos=1,offset=0.2)

text(c1[5],c2[5],"Peulh",cex=1,pos=1,offset=0.2)

abline(h=0,v=0,lty=2)

# Computation of the correlations between the initial variables

#of each dataset and the common components

i1=0; i2=0

for(i in 1:ntab){ i1=i1+1; i2=i2+group[i]; Y.i<-Y[ ,(i1:i2)]

co<-round(cor(Y.i,C),3);print(co); i1=i2 }

# or

coo=round(cor(Y,C),3)

seuil_var=0.5

#Variables to be interpreted on each side of a given axis.

which(abs(coo[, 1])>=seuil_var & coo[, 1]<0)

which(abs(coo[, 1])>=seuil_var & coo[, 1]>0)

which(abs(coo[, 2])>=seuil_var & coo[, 2]<0)

which(abs(coo[, 2])>=seuil_var & coo[, 2]>0)

dev.new()

# Graphical representation of the correlation circle

library(ade4) # Load the package "ade4"

s.corcircle(coo[,1:2], xax = 1, yax = 2,label = row.names(coo),

sub = "Correlation of the original variables with the dimensions 1 and 2",

csub = 1.15, possub = "topleft", fullcircle = TRUE, box = TRUE,

add.plot = FALSE)

x11()

# Graphical representation of the biplot

plot(c1,c2,cex=1, pch=15,xaxt="n", yaxt="n",

xlab=paste0("Dim 1 (", round(res$expl[1,1], 2), "%)"),

ylab=paste0("Dim 2 (", round(res$expl[2,1], 2), "%)"),

main="CCSWA Biplot",col="blue")
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#text(c1,c2,rownames(Y),cex=0.8,pos=4,offset=0.2)

text(c1[1],c2[1],"Dendi",cex=1,pos=3,offset=0.3,col="blue")

text(c1[2],c2[2],"Djerma",cex=1,pos=4,offset=0.3,col="blue")

text(c1[3],c2[3],"Gourmanche",cex=1,pos=1,offset=0.3,col="blue")

text(c1[4],c2[4],"Haussa",cex=1,pos=2,offset=0.3,col="blue")

text(c1[5],c2[5],"Peulh",cex=1,pos=1,offset=0.3,col="blue")

par(new=T)

plot(coo[,1],coo[,2],cex=0.8, pch=19,xlab="",ylab="")

#text(coo[,1],coo[,2],rownames(coo),cex=1,pos=1,offset=0.2)

text(coo[,1][1],coo[,2][1],"Erosion",cex=1,pos=1,offset=0.2)

text(coo[,1][2],coo[,2][2],"Deforest",cex=1,pos=3,offset=0.2)

text(coo[,1][3],coo[,2][3],"Agricset",cex=1,pos=1,offset=0.2)

text(coo[,1][4],coo[,2][4],"Wildfire",cex=1,pos=1,offset=0.2)

text(coo[,1][5],coo[,2][5],"Stamping",cex=1,pos=2,offset=0.2)

text(coo[,1][6],coo[,2][6],"Run-off",cex=1,pos=1,offset=0.2)

text(coo[,1][7],coo[,2][7],"Typesol",cex=1,pos=3,offset=0.2)

text(coo[,1][8],coo[,2][8],"Slope",cex=1,pos=3,offset=0.3)

text(coo[,1][9],coo[,2][9],"Landcover",cex=1,pos=1,offset=0.2)

text(coo[,1][10],coo[,2][10],"Orthogcult",cex=1,pos=4,offset=0.2)

text(coo[,1][11],coo[,2][11],"Stonyline",cex=1,pos=1,offset=0.2)

text(coo[,1][12],coo[,2][12],"Fallow",cex=1,pos=1,offset=0.2)

text(coo[,1][13],coo[,2][13],"Fertilizers",cex=1,pos=1,offset=0.2)

text(coo[,1][14],coo[,2][14],"Manure",cex=0.87,pos=3,offset=0.2)

text(coo[,1][15],coo[,2][15],"Rubbish",cex=1,pos=2,offset=0.2)

text(coo[,1][16],coo[,2][16],"Penning",cex=1,pos=1,offset=0.2)

text(coo[,1][17],coo[,2][17],"Plow",cex=0.9,pos=3,offset=0.2)

text(coo[,1][18],coo[,2][18],"Cart",cex=1,pos=4,offset=0.2)

abline(h=0,v=0,lty = 2)

draw.ellipse(-0.85,0.25,-0.3 , 0.8, border = 'black', lwd = 1,angle = 0)

draw.ellipse(-0.2,0.95,0.2 , .78, border = 'blue', lwd = 1,angle = 90)

draw.ellipse(0.75,0.1,0.35 , 0.9, border = 'red', lwd = 1,angle = 0)

draw.ellipse(0,-0.65,0.3 , .8, border = 'green', lwd = 1,angle = 90)
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#####################################################################

#

# R script to perform PCA

#

#####################################################################

library(FactoMineR)

pc<-PCA(Y, scale.unit=TRUE, ncp=ncol(Y), graph=F)

a=pc$ind$coord; b=pc$var$cor

dev.new()

plot(a[,1],a[,2],cex=.6, pch=15,xaxt="n", yaxt="n",

xlab=paste0("Dim 1 (", round(pc$eig[1,2], 2), "%)"),

ylab=paste0("Dim 2 (", round(pc$eig[2,2], 2), "%)"),

main="PCA Biplot",col="blue")

#text(a[,1],a[,2],rownames(Y),cex=0.8,pos=3,offset=0.3)

text(a[,1][1],a[,2][1],"Dendi",cex=1,pos=4,offset=0.3,col="blue")

text(a[,1][2],a[,2][2],"Djerma",cex=1,pos=2,offset=0.3,col="blue")

text(a[,1][3],a[,2][3],"Gourmanche",cex=1,pos=1,offset=0.3,col="blue")

text(a[,1][4],a[,2][4],"Haussa",cex=1,pos=4,offset=0.3,col="blue")

text(a[,1][5],a[,2][5],"Peulh",cex=1,pos=4,offset=0.3,col="blue")

par(new=T)

plot(b[,1],b[,2],cex=1, pch=19,xlab="",ylab="")

#text(b[,1],b[,2],rownames(b),cex=0.8,pos=3,offset=0.3)

text(b[,1][1],b[,2][1],"Erosion",cex=1,pos=1,offset=0.2)

text(b[,1][2],b[,2][2],"Deforest",cex=1,pos=4,offset=0.2)

text(b[,1][3],b[,2][3],"Agricset",cex=1,pos=1,offset=0.2)

text(b[,1][4],b[,2][4],"Wildfire",cex=1,pos=1,offset=0.2)

text(b[,1][5],b[,2][5],"Stamping",cex=1,pos=3,offset=0.2)

text(b[,1][6],b[,2][6],"Run-off",cex=1,pos=1,offset=0.2)

text(b[,1][7],b[,2][7],"Typesol",cex=1,pos=1,offset=0.2)

text(b[,1][8],b[,2][8],"Slope",cex=1,pos=3,offset=0.3)

text(b[,1][9],b[,2][9],"Landcover",cex=1,pos=4,offset=0.2)

text(b[,1][10],b[,2][10],"Orthogcult",cex=1,pos=4,offset=0.2)

text(b[,1][11],b[,2][11],"Stonyline",cex=1,pos=1,offset=0.2)
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text(b[,1][12],b[,2][12],"Fallow",cex=1,pos=4,offset=0.2)

text(b[,1][13],b[,2][13],"Fertilizers",cex=1,pos=1,offset=0.2)

text(b[,1][14],b[,2][14],"Manure",cex=1,pos=4,offset=0.2)

text(b[,1][15],b[,2][15],"Rubbish",cex=1,pos=4,offset=0.2)

text(b[,1][16],b[,2][16],"Penning",cex=1,pos=2,offset=0.2)

text(b[,1][17],b[,2][17],"Plow",cex=0.9,pos=3,offset=0.2)

text(b[,1][18],b[,2][18],"Cart",cex=1,pos=1,offset=0.2)

abline(h=0,v=0,lty = 2)

draw.ellipse(-0.75,-0.1,-0.3 , 0.6, border = 'black', lwd = 1,angle = 0)

draw.ellipse(0,0.75,0.22 , .7, border = 'blue', lwd = 1,angle = 87)

draw.ellipse(0.75,-0.18,0.42 , 0.77, border = 'red', lwd = 1,angle = 10)

draw.ellipse(0.12,-0.7,0.3 , .95, border = 'green', lwd = 1,angle = 85)
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